Note 13A: Unit Circle

Complete the following steps to graph the unit circle using parametric equations.

a. Make sure your handheld is in Degree mode. If you need help with Degree mode, see Note 12A.
b. In the Graphs & Geometry application, press ☐ and choose Graph Type | Parametric.
c. In the entry line, type $\cos(t)$ for $x(t)$. Press ☐ and type $\sin(t)$ for $y(t)$. Move to the final line and change the numerical values to $0 \leq t \leq 900$ and $\text{step} = 15$.
d. Press ☐ to display the graph. Press ☐ to hide the entry line.

e. Move the cursor to a tick mark on an axis, press ☐, use the NavPad to change the scale of the axes and zoom in on the unit circle. Press ☐ to let go of the tick mark.

f. To find the coordinates of points on the unit circle, press ☐ and choose Trace | Graph Trace.
Note 13B: Radians

In Radian mode, the handheld treats the input of a trigonometric function as a radian measure instead of a degree measure. It also returns a radian measure when you use the inverse trigonometric functions. To put the handheld in Radian mode, press $\text{\textcopyright{}}$, choose System Info $\text{| Document Settings}$, and change the Angle setting to Radian.

Overriding Radian or Degree Mode

If you press \div' after inputting an angle measure, the handheld does calculations using the angle measure in degrees, regardless of which setting the document is in.

If you press \div and choose r after inputting an angle measure, the handheld does calculations using the angle measure in radians, regardless of the angle setting of the document.

Converting Between Radians and Degrees

You can use the catalog function to convert an angle measure from radians to degrees or from degrees to radians.

For example, follow these steps to convert 30° to radians:

a. Set the calculator to Radian mode.

b. Enter 30 and press \div'.

c. Press $\text{\textcopyright{}}(\text{R})$, choose 仁Rad, and press $\text{\textcopyright{}}$ twice. You can divide the answer by π to determine the answer in terms of π.

d. It is more convenient to use a fraction. To convert the decimal to a fraction, press $\text{\textcopyright{}}(\text{Frac})$ to retrieve the decimal and then press $\text{\textcopyright{}}$ and choose $\text{\textcopyright{| Number | Approximate to Fraction}}$. Imagine that $\frac{\pi}{2}$ follows the fraction. So 30° is equivalent to $\frac{\pi}{6}$, or $\frac{\pi}{6}$ radians. (continued)
Note 13B: Radians (continued)

For another example, follow these steps to convert $\frac{7\pi}{12}$ radians to degrees:

a. Set the calculator to Degree mode.

b. Enter $\frac{7\pi}{12}$ and press $\text{on} \frac{\pi}{12}$ and choose r. Then press $\text{select} \ 1 \ \text{D}$, choose θDD, and press twice.

c. So $\frac{7\pi}{12}$ radians is equivalent to 105°.

Note 13C: Secant, Cosecant, and Cotangent

All of the trigonometric functions and the inverse trigonometric functions can be found in the trigonometry section of the catalog. To access these functions, press $\text{on} \ 2$, choose Trigonometry, and then choose the appropriate trigonometric or inverse trigonometric function.

Alternatively, you can type in the trigonometric function. For example, to find the cosecant of 30 degrees, type $\text{csc}(30$ and press on.

You cannot type in the inverse trigonometric functions, but you can find the inverse cosecant, inverse secant, and inverse cotangent by using the inverse of a reciprocal trigonometric function with the reciprocal of the input. For example, to find the sec$^{-1}$ (3.1), press $\text{on} \ \frac{1}{3.1}$, and press twice.

Note 13B: Radians (continued)
Note 13D: Collecting Sound Frequency Data

The microphone sensor is not currently compatible with the TI-Nspire. Change the TI-Nspire faceplate to the TI-84 Plus faceplate.

You need a CBL2 and the EasyData application to collect sound frequency data. Plug the microphone probe into channel CH 1 of the CBL2, and connect the calculator to the CBL2. Press **APPS** and select EasyData. If the program does not recognize the microphone, follow these steps:

a. Press **Setup (WINDOW)** and select Other Sensors.

b. Select CH1 and press **Next (ZOOM)**. Then choose Microphone and press **Next**.

Ring the tuning fork and press **Start (ZOOM)** to begin collecting data. The CBL2 collects data for only 0.02 second, so it will stop again almost immediately. The calculator will display a graph. If the graph does not look like a sinusoidal curve, press **Main (TRACE)** and then **Start (ZOOM)** to try again. Press **OK (GRAPH)** to overwrite the data. If you continue to have trouble collecting good data, adjust the microphone’s position.

When you have good data, press **Main (TRACE)** and then **Quit (GRAPH)**. The calculator will tell you that time data are stored in list L1 and sound frequency data are stored in list L2. Press **OK (GRAPH)**.

The microphone sensor cannot be used with the TI-Nspire CAS at this time. Go to http://education.ti.com for more information.

Note 13E: Polar Coordinates

Graphing Polar Coordinates

Polar equations can be graphed using radians or degrees. To learn how to change to Degree mode, see Note 12A. You can graph a polar equation using these steps:

a. In the Graphs & Geometry application, press **menu** and choose Graph Type | Polar.

b. In the entry line, type an equation in the form \(r = f(\theta) \).

c. Move to the final line and change the numerical values of the inequality to the appropriate values.

Press **menu** to toggle between hiding and displaying the entry line. Change the viewing window if necessary. See Note 4D for help on setting windows.

(continued)
Tracing Polar Coordinates

To trace on a polar graph, press \(\text{menu} \) and choose Trace | Graph Trace. Press \(\uparrow \) or \(\downarrow \) to increase or decrease the angle measure, \(\theta \). Alternatively, you can type the angle measure and press \(\text{dialog} \). The coordinates are displayed in the form \((r, \theta \) \). Press \(\text{dialog} \) to create a point at the current coordinates. This point will be labeled with rectangular coordinates instead of polar coordinates. Press \(\text{menu} \) and choose Trace | Trace Settings to adjust the trace step.

To move to a different graph, press \(\uparrow \) or \(\downarrow \). Press \(\text{esc} \) to put away the trace tool.

Note 13F: Sliders

Sliders allow you to control the values of coefficients in equations. Note that in Graphs & Geometry, you can grab the graph of a function, dynamically alter it, and observe the changes that occur in its equation. Sliders allow you to dynamically change the values of coefficients in an equation and observe the resulting changes in the graph of the equation. You can insert sliders into Graphs & Geometry pages and Data & Statistics pages.

Inserting and Using a Slider

Follow these steps to insert a slider:

a. Press \(\text{menu} \) and choose Graphs & Geometry or Data & Statistics.

b. Press \(\text{dialog} \) and choose Actions | Insert Slider. A slider appears on the graphing screen. Type a name for the slider and press \(\text{dialog} \).

c. If the slider is not in a convenient location, move the cursor to the upper-right corner of the slider and press \(\text{dialog} \). Move the slider to the desired location and press \(\text{esc} \).
Note 13F: Sliders (continued)

d. Move the cursor to the entry line and press \(\mathbb{C} \). Type a function, typing the name of the slider in place of the coefficient you want to vary. It is important to enter operation symbols in the function. For example, if \(b \) is the slider, do not type \(4 + bx \). Type \(4 + b \cdot x \).

e. Press \(\mathbb{C} \) to graph the function.

f. Press \(\mathbb{ESC} \) and move the cursor to the sliding tab on the slider. Press \(\mathbb{C} \) and move the tab to the desired value. Alternatively, move the cursor to the value of the slider. Press \(\mathbb{C} \), type the desired value for the slider, and press \(\mathbb{C} \). The graph will adjust automatically.

Changing Slider Settings

The slider is preset to values between zero and ten. To change these values, move the cursor over the slider and press \(\mathbb{C} \). Then press \(\mathbb{C} \) and choose Settings.

In the Slider Settings dialog box, change the values to the appropriate minimum and maximum. The value you enter in the “Step Size” box will determine the steps the handheld will use if you animate the slider. Press \(\mathbb{C} \).

![Slider Settings dialog box]

(continued)
Note 13F: Sliders (continued)

Animating a Slider

To animate the slider, move the cursor over the slider and press \(\text{动} \). Then press \(\text{动} \) and choose Animate. The slider immediately animates and the graph changes as the slider value changes. To stop the animation, press \(\text{动} \) and choose Stop Animate.

Minimizing a Slider

To minimize the slider, move the cursor over the slider and press \(\text{动} \). Press \(\text{动} \) and choose Minimize. The slider can be controlled by the up and down arrows next to the slider value. Move the cursor to these arrows to change the value of the slider in step increments. To return the slider to its original size, press \(\text{动} \) and choose Maximize.